Chapter 4

Vector differential equations

4.1 Problems VC-1

4.1.1 Topics of this homework:

Vector algebra and fields in \mathbb{R}^{3}, gradient and scalar Laplacian operators, definitions of divergence and curl, Gauss's (divergence) and Stokes's (curl) laws, system classification (postulates).

4.1.2 Scalar fields and the ∇ operator

Problem \# 1: Let $T(x, y)=x^{2}+y$ be an analytic scalar temperature field in two dimensions (single-valued $\in \mathbb{R}^{2}$).

- 1.1: Find the gradient of $T(\boldsymbol{x})$ and make a sketch of T and the gradient.

Sol: $\nabla\left(x^{2}+y\right)=2 x \hat{\mathbf{x}}+\hat{\mathbf{y}}$. The temperature is quadratic in x and linear in y, which has the shape of a trough in x, linearly increasing in y. In the $y(\hat{\mathbf{y}})$ direction the gradient is constant, and in the $\hat{\mathbf{x}}$ direction, it is linear, and goes through zero at $x=0$, with $T(0)=0$. Skiing in the y direction would be a constant ride of slope 1 . If the snow had no friction, you would accelerate, but the terminal velocity would be due to the friction of the snow on the skis. Along the x direction, you would accelerate, at first, coming down, and at $x=0$ you would stop accelerating, and begin slow down. This would be a more interesting problem if you treated it in terms of the forces on the skis and included friction as well as gravity.

- 1.2: Compute $\nabla^{2} T(\boldsymbol{x})$ to determine whether $T(\boldsymbol{x})$ satisfies Laplace's equation.

Sol: Forming this operation we find that

$$
\frac{\partial^{2}}{\partial x^{2}} x^{2}+\frac{\partial^{2}}{\partial y^{2}} y=2
$$

So $T(\boldsymbol{x})$ does not satisfy laplace's equation, rather it satisfies the Poisson equation $\nabla^{2} T(\boldsymbol{x})=2$.

- 1.3: Sketch the iso-temperature contours at $T=-10,0,10$ degrees.

Sol: The iso-potential contours are the concave parabolas $y=T_{0}-x^{2}$..

- 1.4: The heat flux ${ }^{1}$ is defined as $\boldsymbol{J}(x, y)=-\kappa(x, y) \nabla T$, where $\kappa(x, y)$ is a constant that denotes thermal conductivity at the point (x, y). Given that $\kappa=1$ everywhere (the medium is homogeneous), plot the vector $\boldsymbol{J}(x, y)=-\nabla T$ at $x=2, y=1$. Be clear about the origin,

[^0]direction, and length of your result.
Sol: $\mathbf{J}=\nabla T=-2 x \hat{\mathbf{x}}+-\hat{\mathbf{y}}$ thus $-\kappa \nabla T(2,1)=\mathbf{J}=-(4 \hat{\mathbf{x}}+\hat{\mathbf{y}})$, which has a length of $\sqrt{17}$ and is pointed $1 \sqrt{1}$ unit down and $4 / \sqrt{17}$ units to the left.

- 1.5: Find the vector \perp to $\nabla T(x, y)$-that is, tangent to the iso-temperature contours. Hint: Sketch it for one (x, y) point (e.g., 2,1) and then generalize.

Sol: We may invoke the third dimension $\hat{\mathbf{z}}$ to generate this vector: $\pm \hat{\mathbf{z}} \times \nabla T=\left[\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 0 & 0 & \pm 1 \\ 2 x & 1 & 0\end{array}\right]=\mp(1 \hat{\mathbf{x}}-$ $2 x \hat{\mathbf{y}}+0 \hat{\mathbf{z}}$). Alternatively, rotate ∇T by $\pm \pi / 2$ in the (x, y) plane. -

- 1.6: The thermal resistance R_{T} is defined as the potential drop ΔT over the magnitude of the heat flux $|\boldsymbol{J}|$. At a single point the thermal resistance is

$$
R_{T}(x, y)=-\nabla T /|\boldsymbol{J}| .
$$

How is $R_{T}(x, y)$ related to the thermal conductivity $\kappa(x, y)$?
Sol: $R_{T}(x, y)=1 / \kappa(x, y)$. In general, resistance is the reciprocal of conductivity (conductance). This is true for electrical and acoustic systems as well.

Problem \# 2: Acoustic wave equation

Note: In this problem, we will work in the frequency domain.

- 2.1: The basic equations of acoustics in one dimension are

$$
-\frac{\partial}{\partial x} \mathcal{P}=\rho_{o} s \mathcal{V} \quad \text { and } \quad-\frac{\partial}{\partial x} \mathcal{V}=\frac{s}{\eta_{o} P_{o}} \mathcal{P}
$$

Here $\mathcal{P}(x, \omega)$ is the pressure (in the frequency domain), $\mathcal{V}(x, \omega)$ is the volume velocity (the integral of the velocity over the wavefront with area $A), s=\sigma+\omega \jmath, \rho_{o}=1.2$ is the specific density of air, $\eta_{o}=1.4$, and P_{o} is the atmospheric pressure (i.e., $10^{5} \mathrm{~Pa}$). Note that the pressure field P is a scalar (pressure does not have direction), while the volume velocity field \mathcal{V} is a vector (velocity has direction).

We can generalize these equations to three dimensions using the ∇ operator

$$
-\nabla \mathcal{P}=\rho_{o} s \mathcal{V} \quad \text { and } \quad-\nabla \cdot \mathcal{V}=\frac{s}{\eta_{o} P_{o}} \mathcal{P}
$$

- 2.2: Starting from these two basic equations, derive the scalar wave equation in terms of the pressure P,

$$
\nabla^{2} \mathcal{P}=\frac{s^{2}}{c_{0}^{2}} \mathcal{P}
$$

where c_{0} is a constant representing the speed of sound.
Sol: We wish to remove \mathcal{V} from the two equations, to obtain a single equation in pressure. If we take the partial wrt x of the pressure equation, and then substitute the velocity equation, to remove the velocity:

$$
\nabla^{2} \mathcal{P}=-\rho_{o} s \nabla \cdot \mathcal{V}=\frac{s^{2} \rho_{o}}{\eta_{o} P_{o}} \mathcal{P}=\frac{s^{2}}{c_{o}^{2}} \mathcal{P}
$$

-
- 2.3: What is c_{0} in terms of η_{0}, ρ_{0}, and P_{0} ?

Sol: Comparing the last two terms from the previous solution we see that

$$
c_{o}=\sqrt{\eta_{o} P_{o} / \rho_{o}} .
$$

- 2.4: Rewrite the pressure wave equation in the time domain using the time derivative property of the Laplace transform [e.g., $d x / d t \leftrightarrow s X(s)$]. For your notation, define the timedomain signal using a lowercase letter, $p(x, y, z, t) \leftrightarrow \mathcal{P}$.

Sol:

$$
\nabla^{2} p(x, y, z, t)=\frac{1}{c_{0}^{2}} \frac{\partial^{2}}{\partial t^{2}} p(x, y, z, t)
$$

-

4.1.3 Vector fields and the ∇ operator

4.1.4 Vector algebra

Problem \# 3: Let $\boldsymbol{R}(x, y, z) \equiv x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}+z(t) \hat{\mathbf{z}}$.

- 3.1: If a, b, and c are constants, what is $\boldsymbol{R}(x, y, z) \cdot \boldsymbol{R}(a, b, c)$?

Sol: Using the formula for a scalar dot product:

$$
\begin{aligned}
\mathbf{R}(x, y, z) \cdot \mathbf{R}(a, b, c) & \equiv[x(t) \hat{\mathbf{x}}+y(t) \hat{\mathbf{y}}+z(t) \hat{\mathbf{z}}] \cdot[a \hat{\mathbf{x}}+b \hat{\mathbf{y}}+c \hat{\mathbf{z}}] \\
= & x(t) a+y(t) b+z(t) c .
\end{aligned}
$$

-
- 3.2: If a, b, and c are constants, what is $\frac{d}{d t}(\boldsymbol{R}(x, y, z) \cdot \boldsymbol{R}(a, b, c))$?

Sol: $\left(a \frac{d}{d t} x(t)+b \frac{d}{d t} y(t)+c \frac{d}{d t} z(t)\right)$.
Problem \# 4: Find the divergence and curl of the following vector fields:

$$
-4.1: v=\hat{\mathbf{x}}+\hat{\mathbf{y}}+2 \hat{\mathbf{z}}
$$

Sol: $\nabla \cdot \mathbf{v}=0, \nabla \times \mathbf{v}=0$.

$$
-4.2: \boldsymbol{v}(x, y, z)=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+z^{2} \hat{\mathbf{z}}
$$

Sol: $\nabla \cdot \mathbf{v} \equiv \partial_{x} x+\partial_{y} x y+\partial_{z} z^{2}=1+x+2 z \nabla \times \mathbf{v} \equiv\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x & x y & z^{2}\end{array}\right|=(0-0) \hat{\mathbf{x}}+(0-0) \hat{\mathbf{y}}+(y-0) \hat{\mathbf{z}}=y \hat{\mathbf{z}}$ -

$$
-4.3: \boldsymbol{v}(x, y, z)=x \hat{\mathbf{x}}+x y \hat{\mathbf{y}}+\log (z) \hat{\mathbf{z}}
$$

Sol: Divergence: $\partial_{x} x+\partial_{y} x y+\partial_{z} \log (z)=1+x+1 / z$, Curl: $\hat{\mathbf{x}}\left(\partial_{y} \log (z)-\partial_{z} x y\right)+\hat{\mathbf{y}}\left(\partial_{z} x-\partial_{x} \log (z)\right)+$ $\hat{\mathbf{z}}\left(\partial_{x} x y-\partial_{y} x\right)=\hat{\mathbf{z}} y=$

$$
\text { -4.4: } \boldsymbol{v}(x, y, z)=\nabla(1 / x+1 / y+1 / z)
$$

Sol: First find $\mathbf{v}=-\left(\hat{\mathbf{x}} / x^{2}+\hat{\mathbf{y}} / y^{2}+\hat{\mathbf{z}} / z^{2}\right)$. Divergence of $\mathbf{v}:-\left(\partial_{x} 1 / x^{2}+\partial_{y} 1 / y^{2}+\partial_{z} 1 / z^{2}\right)=2\left(1 / x^{3}+\right.$ $\left.1 / y^{3}+1 / z^{3}\right)$, Curl of v : 0 , because the curl of the gradient is always zero.

4.1.5 Vector and scalar field identities

Problem \# 5: Find the divergence and curl of the following vector fields:

- 5.1: $\boldsymbol{v}=\nabla \phi$, where $\phi(x, y)=x e^{y}$

Sol: $\nabla \times \nabla \phi=0$, and $\nabla^{2} \phi=x e^{y}$

- 5.2: $\boldsymbol{v}=\nabla \times \boldsymbol{A}$, where $\boldsymbol{A}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$

Sol: $\nabla \cdot(\nabla \times \mathbf{A})=0$, and $\nabla \times(\nabla \times \mathbf{A})=0$.

- 5.3: $\boldsymbol{v}=\nabla \times \boldsymbol{A}$, where $\boldsymbol{A}=y \hat{\mathbf{x}}+x^{2} \hat{\mathbf{y}}+z \hat{\mathbf{z}}$

Sol: $\nabla \cdot(\nabla \times \mathbf{A})=0$, and $\nabla \times(\nabla \times \mathbf{A})=-2 \hat{\mathbf{y}}$.

- 5.4: For any differentiable vector field \boldsymbol{V}, write two vector calculus identities that are equal to zero.
Sol: Curl of the gradient $\nabla \times \nabla \Phi(x, y, z)=0$ and the divergence of the curl $\nabla \cdot \nabla \times \mathbf{V}(x, y, z)=0$ are both zero. (Page 780, Stillwell) ■
- 5.5: What is the most general form a vector field may be expressed in, in terms of scalar Φ and vector \boldsymbol{A} potentials?
Sol: $\mathbf{V}=\nabla \Phi(x, y, z)+\nabla \times \mathbf{A}(x, y, z)$, where Φ is the scalar potential and \mathbf{A} is the vector potential.
Problem \# 6: Perform the following calculations. If you can state the answer without doing the calculation, explain why.

$$
-6.1: \text { Let } \boldsymbol{v}=\sin (x) \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}} . \text { Find } \nabla \cdot(\nabla \times \boldsymbol{v})
$$

Sol: 0 -
-6.2: Let $\boldsymbol{v}=\sin (x) \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$. Find $\nabla \times(\nabla \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}})$

Sol: 0 -

- 6.3: Let $\boldsymbol{v}(x, y, z)=\nabla\left(x+y^{2}+\sin (\log (z))\right.$. Find $\nabla \times \boldsymbol{v}(x, y, z)$.

Sol: It is zero because $\nabla \times \nabla f(x, y, z)$ is always zero.

4.1.6 Integral theorems

Problem \# 7: For each of the following problems, in a few words, identify either Gauss's or Stokes's law, define what it means, and explain the formula that follows the question.

- 7.1: What is the name of this formula?

$$
\int_{\mathcal{S}} \hat{\mathbf{n}} \cdot \boldsymbol{v} d A=\int_{V} \nabla \cdot \boldsymbol{v} d V
$$

Sol: This is the integral form of Gauss' law. The unit normal vector is \perp to the surface S having area $A \equiv \int_{S} d A$ The integral represents the total flow normal to the surface. The surface integral is equal to the integral of the divergence of the vector field $\nabla \cdot \mathbf{v}$ over the volume contained by the surface, and defined as \mathcal{V}.

- 7.2: What is the name of this formula?

$$
\int_{S}(\nabla \times \boldsymbol{V}) \cdot d \boldsymbol{S}=\oint_{C} \boldsymbol{V} \cdot d \boldsymbol{R}
$$

Give one important application. Sol: Stokes Theorem, which relates the differential to the integral form of Maxwell's equations.

- 7.3: Describe a key application of the vector identity

$$
\nabla \times(\nabla \times \mathbf{V})=\nabla(\nabla \cdot \mathbf{V})-\nabla^{2} \mathbf{V}
$$

Sol: When we wish to reduce Maxwell's two curl equations to the vector wave equation, we must use this identity.

[^0]: ${ }^{1}$ The heat flux is proportional to the change in temperature times the thermal conductivity κ of the medium.

